How Much Ethanol is Too Much?

Graeden

Member
Joined
Apr 20, 2014
Threads
1
Messages
32
That's interesting... it makes me wonder if shaking the gas can (which I do regularly) will help prevent this accumulation.

In my area it seems that all the pumps - and all grades -- are labeled "up to 10% ethanol". There are places where you can get non-ethanol gas but none close to me. :mad:

Shaking the can will not prevent water absorption into the fuel. Fuel expands with temperature increases and moisture will build up in the can itself, aka sweating. By shaking it you are just introducing more water into the fuel. Personally I add a stabilizer to all my fuel to help prevent this breakdown of the two fuels. I use Lucas' Safeguard Ethanol fuel treatment, and have been using it successfully for about 2 years now. Last year alone I spent around $14,000 in fuel alone (only in my van) and not once did I have a fuel related problem using the Lucas. You can buy a large bottle at Walmart for $9 and you use 1 oz to every 5 gallons of fuel. Impossible to "over treat" is also claimed. Like you, I also shake my gas can a bit before I pour it just to make sure it is mixed. In my lawn equipment I use 93 octane fuel with the Lucas and AMSOil Formula 4Stroke 10W-30/SAE 30 oil. So far so good!

Here is a link to the Lucas I use if your interested:

Safeguard
 

Graeden

Member
Joined
Apr 20, 2014
Threads
1
Messages
32
Copied this via a PDF document by Samir Jain/Veeder Root:

Background

The use of ethanol as a fuel in the United States has significantly increased over the past decade.
Today, greater than 80% of all retail gas stations in the US blend gasoline with up to 10%
ethanol (E10). Ethanol is a renewable fuel, and has been highlighted by the national Renewable
Fuels Standard as a primary method of achieving the renewable fuels goal. Ethanol is also an
octane booster, and E10 fuels rely on the ethanol content to achieve octane levels.

Water Intrusion

Fuel is typically stored in underground storage tanks (UST) and it is common for water to find its
way into these tanks. Prior to the use of ethanol, water entering the tank would drop through the
fuel and find its way to the bottom of the tank were it could be detected and removed before it
would be picked up by the pumping system and delivered into a vehicle. Pure water is heavier, or
denser, than gasoline-based fuels.
The following table shows the density of various fluids at

15ーC (59ーF):
Fluid Density (kg/m3)
E10 gasoline 690-785
Pure ethanol 789
Water 998

Table 1: Density of various fluids

Ethanol is a hydrophilic compound, which means it naturally attracts water. Therefore when
water enters a tank containing an ethanol blended fuel, the water will eventually be absorbed by
the ethanol. The amount of water that is absorbed in the fuel versus falling to the bottom is a
function of the rate of water flow into the tank along with the amount of mixing that occurs. Full
absorption usually requires some kind of mixing such as that provided during a fuel delivery to a
UST. Table 2 highlights many common reasons for water intrusion in an underground storage
tank, and the rate at which water flows into a tank.

Source of Water Intrusion Rate of water
flow into tank

Water in delivery of fuel Instant
Existing water in tank when switching from neat/pure gas to ethanol blended
gas
Instant
Water in delivery spill bucket released into tank Quick
Delivery riser cap not replaced after delivery, rain water entry Quick
Hole in vent cap / line, rain water entry Varies
Leaky tanks / Groundwater entry Slow
Degraded or cracked seals of sump lid Slow
Condensation of water vapor Slow

Table 2: Sources of water intrusion in an underground storage tank

How Phase Separation forms

Water in the tank will continue to be absorbed into the ethanol-blended fuel until it reaches a
saturation point. With E10 fuel at 15ーC, this saturation point is at approximately 0.5% water to
the volume of fuel. Once the blended fuel reaches this saturation level, the ethanol-water
mixture separates from the fuel and falls to the bottom, since its density is now higher than the
fuel with which it is mixed. This separated layer is commonly known as Phase Separation. The
phase separation layer typically contains 3-4 parts of ethanol for each part water. For a 10,000
gallon tank that is 60% full of fuel, it will take approximately 30 gallons of water to cause full
phase separation of the fuel, and the resulting layer will contain approximately 120 gallons of
ethanol which would be about 5 inches in height assuming a 10-foot diameter tank.

An alternate phenomenon can occur with far less water than that needed for phase separation.
As previously discussed, some of the water will drop directly to the bottom of the tank as it
enters. This water will pull some quantity of ethanol from the fuel as it passed through it. This
water-ethanol mixture will then pull additional ethanol from the surrounding fuel over time,
increasing in volume and resulting in a mixture that is very similar to phase separation. We refer
to this layer as Partial Phase Separation. Partial phase separation can occur with far less than
0.5% water. The resulting layer may contain less ethanol than normal phase separation, making
it more dense. Additionally, this layer is somewhat temporary in nature; if the tank of fuel is
thoroughly mixed (say, during a delivery), the ethanol-water will likely be reabsorbed back into
the fuel, and the partial phase separation will disappear. Studies have shown that a small amount
(~1? of phase separation can be quickly remediated by scheduling a delivery of fuel; however,
the resulting mixture may contain higher concentrations of absorbed water, pushing it closer to
Phase Separation.
 

Graeden

Member
Joined
Apr 20, 2014
Threads
1
Messages
32
Effects of Phase Separation

There are three negative effects of phase separation:
1. Damage to petroleum equipment infrastructure
2. Damage to customer vehicles and station brands
3. Out of spec or unsellable fuel

1. Damage to petroleum equipment infrastructure

Phase separation contains a lot of ethanol, some water, and a small amount of gasoline. Letç—´
assume a typical ratio of 75% ethanol, 20% water, and 5% gasoline. This mixture is highly
corrosive compared to pure water or E10 gasoline; there are some concerns that phase separation
may even be more corrosive than 100% ethanol. Some tanks may not be compatible with this
ethanol-rich, corrosive liquid. Depending on the composition of the tank, phase separation
sitting in the tank may slowly deteriorate the integrity of tank walls, increasing the risk of a leak
into the environment.

Beyond the tank, other elements of the storage and delivery system (piping, dispenser,
submersible turbine pump) may also be at risk if the phase separation levels rise to the point
were it is picked up by the pumping system. Each of these can also have environmental and
financial concerns, as their replacement can be expensive and damaging to the environment if
not detected. Ideally, a station owner would want to know about any occurrence of phase
separation as fast as possible, allowing them to quickly remediate to reduce the exposure to
potential deterioration.

2. Damage to customer vehicles and station brands

As mentioned in the example described earlier, a 10,000 gallon tank with 6000 gallons of fuel
that has recently had phase separation is likely to have up to 5 of the separated layer. Typically,
submersible turbine pumps set their intake at around 5?6? This leads to a significant chance
that phase separation will enter the pumping system, travel through the piping, dispensers, and
ultimately into customer vehicles. Phase separation in most vehicles will cause engines to stall,
leaving disabled vehicles at the station. Affected vehicles will require repairs (usually at the
station ownerç—´ expense). Of course, owners of the damaged vehicles are understandably upset,
and typically share bad experiences with their friends and family. Thus, the station suffers a hit
in their brand and customer loyalty. The problem can be much further exasperated if the local
news media pick up the story. In this case, the station may lose significant business that is
difficult to recover, and the fuel marketer takes a considerable hit to their brand.
Remediation of the problem at this point, beyond the damage to customer vehicles and brand,
includes purging the piping system, replacing dispenser filters, and possibly disposing of the
entire tank of fuel, which can easily cost thousands of dollars.

3. Out of spec or unsellable remaining fuel

The octane of pure ethanol is approximately 113, which makes ethanol an octane booster. Most
companies that are blending 87-octane E10 gasoline will blend with pure gasoline that is below
87 octane, because the 10% ethanol will boost the octane level to 87. However, once phase
separation occurs, the remaining fuel is depleted of ethanol, which will lower the octane.
Depending on how much phase separation occurs and how much ethanol is pulled out of the fuel,
the remaining fuel may be out of specification due to a reduced octane level. In this case, even if
the phase separation is removed from the bottom of the tank, the remaining fuel is not legally
sellable.

Current Detection Methods

Most station owners typically use one or more of the following methods to detect phase
separation, each of which has limitations:

1. Automatic Tank Gauge / Monitor with water detection
2. Water-finding paste
3. Dispenser filters

1. Automatic Tank Gauge with water detection

Figure 1 shows a typical underground storage tank. The center of the tank contains a
magnetostrictive probe, which is a component in an automatic tank gauge (ATG). This probe is
wired to a console, which is typically mounted in the back office of a gas station. Querying the
console allows the user to determine various parameters in the underground tank. In particular,
there are floats for fuel and water that determine the respective levels of each. The water float is
typically tuned for a density that will certainly lift in water but not in other lighter fluids (such as
gasoline or diesel). Note that in this figure, there is water at the bottom of the tank, and the water
float has lifted accordingly. This information is sent to the tank gauge console so that the station
operator can read the height information and react as needed.

Figure 1: Underground storage tank with fuel and water floats
Fuel Float
Water Float

Phase separation has a density range of 800-850 kg/m3 at 15ï½°C, depending on the density of
gasoline, the blend of ethanol in the gasoline, and the ratio of ethanol to water. Water floats are
typically tuned to a density greater than 800 kg/m3. The net effect is that while the water float
will rise in water, it may not rise in a phase separation mixture. This is the fundamental problem
with ATG-based solutions for the measurement of phase separation. While these solutions work
extremely well for the detection of water in various fuels, the addition of ethanol causes the
water to transform to a lower density mixture, which may not always be detected. The station
operator that is counting on the level reading of the water float on their ATG to alarm them of an
issue is effectively blind to a problem if the water float is sitting at the bottom of a tank,
indicating no water when in fact there may be several inches of phase separation in the tank.

One may wonder why the water float is not tuned to a density level between the highest density
of gasoline and the lowest density of phase separation. Each of these density ranges reported in
Ethanol is a hydrophilic compound, which means it naturally attracts water. Therefore when
water enters a tank containing an ethanol blended fuel, the water will eventually be absorbed by
the ethanol. are at a nominal temperature of 15ï½°C. As the temperature rises and falls, the
densities change significantly. It is possible to see a very high density gasoline (say 820 kg/m3)
under extremely cold conditions and very low density phase separation (say 780 kg/m3) under
extremely hot conditions. Under these scenarios, itç—´ impossible to select a single density for the
water float that will always rise in phase separation and will never rise in gasoline.

2. Water-finding Paste

A common method of detecting water in a tank is to apply a special water-finding paste to the
end of a stick and dip the stick into the tank, a process known as 都ticking a tank. A change in
the color of the paste (varies based on paste manufacturer) may indicate the presence of water in
the tank. In recent years, these paste manufacturers have added variations that will detect phase
separation.

There are multiple issues with these pastes. The first is that they are difficult to interpret. The
change in color is sometimes subtle, and operators are not always given enough training to
properly interpret the changes of color. Multiple factors may affect the color change, such as the
duration of exposure in the tank, thickness of the applied paste, operator training and the outdoor
conditions (rain, snow, etc.), making the paste-based solutions inconsistent.
Secondly, the paste-based solution is only effective when used regularly. Some companies have
policies where store operators are expected to stick the tank once or twice a week. Even if they
did it at these frequencies (and many stations do not), phase separation can occur any time and
can quickly grow. These stations would have to be extremely lucky to actually stick the tank at
the moment that phase separation formed and before it caused damage to their customers cars
and their business.

3. Dispenser filters

Each gasoline dispenser usually has a disposable filter inside it that filters out unwanted
particulates prior to the fuel reaching the nozzle and customer vehicle. Some of these filters will
also filter out water, by quickly constricting once water is detected. The result is a very slow
flow of fuel out of the nozzle. Therefore, slow flow is a potential indication of water reaching
the dispenser. In recent years, these filter manufacturers have developed more complex filters
that will also constrict with phase separation.

As with water-finding paste, there are multiple issues with dispenser filters. The first is that the
filters do not work instantaneously; in other words, they do not go from a state of å￾￾ull flow to
渡o flow in zero seconds. Even the quickest of filters take a minute or two to completely close
up. In that time, the filters may still allow some contaminated fuel (i.e. phase separation) to pass
through and enter customer vehicles. While they may reduce the damage, they do not
completely eliminate the potential to get phase separation in a vehicle.

By the time phase separation is detected by a dispenser filter, it has already accumulated in
significant volume, leading to much larger remediation costs. In order for phase separation to
enter the dispenser, it must have gone through the tanks pumping system and piping. That also
means that the tank must contain 5-6 inches of phase separation. To remediate this problem, the
piping must be purged of phase separation and dispenser filters changed. The remaining fuel is
significantly stripped of ethanol and much more likely to be out of spec. And the extended
exposure of phase separation to tanks and piping may accelerate any potential corrosion issues in
the petroleum infrastructure.

404 Not Found...
 

Pontisteve

Forum Newbie
Joined
Feb 8, 2012
Threads
1
Messages
5
As an EFI calibrator, I can tell you that ethanol sucks. It has less energy in it, and for all the hype the government has about emissions improvements, this stuff is worse for emissions than regular gas. Particularly in evaporative emissions, which is just what it sounds like... gas evaporating. Try pouring a little gasoline on the concrete driveway and watch it evaporate. Now try pouring rubbing alcohol on the driveway and watch how fast it evaporates. And therein lies the problem.

For now, let's just say that as usual, politics has given us this problem. We're stuck with 10% ethanol right now, and lawmakers are contemplating 15%.

Cars built before 2001 weren't built for ethanol in any quantity, and after 2001 they were mostly built for 10% max. Even at that, we see plenty of evidence of cars getting damaged by ethanol. But small engines... forget it. The passages in the carburetors are far too small, and get goofed up by ethanol much more easily. I've rebuilt probably 50 of those little Walbro carbs on weedeaters and blowers, and they are the worst. Taking them apart, ultrasonically cleaning them, and reassembling them with a new carb kit usually does the trick, but sometimes even that don't work.

I've noticed that older Walbro or Zama carbs have two mixture screws, lo and hi, and have a checkball and spring in their fuel inlet block. Newer carbs got rid of the mixture screws, meaning the air/fuel ratio has to be perfect as-is, and you have no ability to compensate for a slightly blocked fuel port. Newer carbs also got rid of the metal check-ball (looks like a BB), and replaced it with a smaller spring and a piece of gasket paper. ARGH! This took me forever to figure out, and there isn't much I can do about it if this system is messed up.

What I have discovered is that you can gently take apart the fuel block's checkball cover, remove the spring and paper check valve, then ultrasonically clean the entire disassembled carb, put the check valve back in, and then rebuild the carb with a new kit. What you can NOT do is blow shop air thru the passages in the carb. It will easily blow the paper check valve right out of the carb, leaving only the spring. In this instance, you will not be able to prime the carburetor.

Also, with the carbs that have mixture screws, you can adjust the mixture until the bad carb runs, get it running on high, and slowly readjust the mixture as the high RPMs clean out any blockage in the carb. Without these mixture screws, there is zero tolerance for any junk in the carb. It simply will not run until you rebuild it.

I have noticed that the lawnmower and larger carbs seem to be much more tolerant of ethanol. But those little Walbro carbs like on weedeaters and blowers, they are just horribly sensitive to ethanol. The government screwed all of us over on Ethanol. Not only does it have 4% less energy in it (meaning 4% less gas mileage), but it also destroys any fuel system not specifically designed to resist ethanol. And by that, I mean stainless steel fuel lines, no rubber or plastic, and a carb with adjustable metering screws and ethanol-resistant gaskets.
 
Top